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Bombay, for allowing them to the use CDC-3600 ver- 
sions of the ORFLS and ORFFE programs and for 
many discussions on computation. 
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The effect of an entirely misplaced atom in P 1 (or two equivalent atoms in P1-) is to give residuals 
of approximately the following values: 

P1 PT 
R = ( lFwrongl- IFright[ )/(IF[) 16fins[2 271/2 8V2f/n3/2 271/2 
R1 = (/wrong /right ) / (1)  8f/7c3/2 X1/2 321/2ffir5/2 271/2 
R2 = ((/wrong -- /'right)2)/(/2 ) 2f2/ 2; 16f2/3 27 

where f is the scattering factor of the misplaced atom and 27 is the sum of the squares of the scattering 
factors of all the atoms. These values seem too big to be overlooked unless the total number of atoms 
is very large. 

1. Introduction 

In connexion with the refinement of one of the struc- 
tures of the apatite group, the question arose of 
the size of the residual to be expected if one atom were 
entirely misplaced, and the following calculations were 
therefore undertaken. Three disagreement indices or 
residuals are in common use, R based on the difference 
of the moduli of the structure factors, R1 based on the 
difference of the squares of the moduli, and R2 based 
on the square of the difference of the squares. The last, 
being effectively the variance of IFI 2, is considerably 
simpler to manipulate theoretically than are the other 
two, and the three residuals are, therefore, treated in 
reverse order below. 

* Permanent address. 

The calculations depend on averaging the difference 
between quantities calculated with the atom in the 
wrong place and similar quantities calculated with the 
atom in the right place. The vector difference between 
two atomic positions that can be regarded as a com- 
plete misplacement is, of course, a function of the 
Bragg angle, or more accurately of the scattering vec- 
tor. If the 'right'  position of the atom is r0 and its as- 
sumed position is r, the difference in phase between 
their contributions to the reflexion with scattering 
vector S is 2~zS. ( r0- r ) .  For  the calculations to pro- 
ceed smoothly it is necessary for this phase difference 
to change by at least 2z~ as S takes on all orientations, 
so that an atom is entirely misplaced only if its distance 
from its correct position is larger than the reciprocal 
of the magnitude of the scattering vector. For  the 
lowest-angle reflexions, therefore, the displacement 
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must be a large fraction of the cell size, but for higher- 
angle reflexions the necessary displacement becomes 
progressively smaller. This is in accordance with the 
common knowledge that accuracy in the determination 
of atomic parameters is obtained mainly from the 
high-angle reflexions. 

In § § 2-4 the calculation pictured is that of the 
residual arising if in an entirely correct structure the 
coordinates of one atom (and any related to it by 
crystallographic symmetry) are altered. In the practical 
determination of a crystal structure there would also 
be a residual arising from experimental error in the 
measurements of the structure factors and from defects 
in the model (such as doubts concerning the proper 
atomic scattering factors). In § 5 the joint residual 
arising from a misplaced atom in conjunction with ex- 
perimental errors and certain other practical matters 
are discussed. The calculations refer specifically to 
structures having the space groups P1 and PT, but 
similar methods could be used for any space group. 
In general one would expect the same dependence on 
f and Z b u t  larger numerical coefficients in space 
groups of higher symmetry. 

2. Space group P1 
(a) Residual R2 

We require to find the value of 

R2 = ((I2-- I1)2)/(I 2 ) (1) 

= (([Fz] 2 -  [F,[Z)z)/(IF[4), (2) 

where the angle brackets indicate averages over all 
values of S. Let the structure factor due to all atoms 
except the misplaced one be F0 exp (iv), where Fo is 
its magnitude and V its phase, the correct position of 
the misplaced atom be r0, and its assumed position r. 
Then the correct structure factor is 

F~= F0 exp ( i v ) + f e x p  (iO), (3) 
where 

0 = 27tS. ro, (4) 
but it is taken to be 

Fz=Fo exp (i~) + f e x p  (i~0), (5) 
where 

~0 = 2z~S. r ; (6)  

f is the scattering factor of the misplaced atom and S 
is the scattering vector. From equations (3) and (5) 

I ~ = F ~ F ~ = F 2 + f z + 2 f F o c o s ( g t - O ) ,  (7) 

I2= F2V~ = F2 + f z +  2fFo cos (~-q) )  , (8) 
so that 

I2 - I i=2 fFo{  cos ( ~ ' - 9 ) -  cos (~ , -0)}  (9) 

= -4 fFo sin (V-½0-½rp) sin (½0-½9),  (10) 

( /2- /1)2= 16f2F~ sin 2 (g-½0-½~0) sin 2 (½0-½~0). (11) 

If the components of F1 and F2 are independently dis- 
tributed in phase, the conditions for which are dis- 
cussed in § 1, the average of ( I2- I i )  z over a large 
number of values of S can be obtained by averaging 
each of the factors in equation (11) separately, giving 

( ( I 2 - I 1 ) 2 ) =  16 f  z . ( F ~ )  . ½ . ½  

= 4 f 2 ( Z - i f ) ,  (12) 

where Z is the sum of the squares of the atomic scat- 
tering factors (Wilson, 1942). Since the mean-square 
value of I for a non-centrosymmetric structure is 

( I 2 ) = 2  Z "2- Z4, (13) 

where Z4 is the sum of the fourth powers of the atomic 
scattering factors (Wilson, 1951), the value of the re- 
sidual is 

4fz( X - i f )  
R2 = " 2 Z '2 - -  ,~4 " ( 1 4 )  

If the correction terms are neglected this reduces to 

R2 = 2f2/27, (15) 

and if the structure consists of n atoms of roughly equal 
scattering power X,., n f  2, Z4 ~ n f  4, and 

R 2 ~ 4 ( n -  1)/n(2n- 1)~2n -1 . (16) 

(b) Residual Ra 

The residual R, is given by 

R , -  ([I2-Ial)  (17) 
(i) 

From equation (10) 

1 1 2 - I d = 4 f l F d l s i n  (~u-½0-½~0)l I sin (½0-½~0)1, (18) 

and under the same assumptions of independence of 
the distributions 

([Fo[) =½{~z( Z _f2)}a/2 (19) 

(Wilson, 1949) and 

([ sin x ] ) =  2~z -1 . (20) 

Since the mean value of I is X, the residual is 

R l = 4 f  . ½{~z( X _f2)},/2.2rg-1. Dr- ' .  S - '  

8f( ~E'_f2)1/2 
Z#/2 Z (21) 

~, 8 f/7~3[2 ,~  1/2 (22) 

8 ( n -  1)1/2 
7~3/2// 

(23) 

~, 87~-3/2n-1/2  . (24) 
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(e) Residual R 

The values of R2 and Rx were obtained without 
making any new mathematical approximations, but it 
does not seem possible to obtain 

R =  (IIF21- IFall) (25) 
(IFI) 

in a simple fashion without making a series approxima- 
tion. For all but a small fraction of the reflexions 
F2o+f z is numerically greater than 2fFo cos ({u-0),  so 
that IFxl can be obtained by taking the square root of 
equation (7) by means of the binomial theorem, giving 

[ IF,[=(F~+f2)~/z 1+ F~+-----fi-cos(~,-0) 

Fgf2 ] 
- 2(Fg+fz) 2 cosZ({U-0)+ . . .  , (26) 

and similarly for [Fz]. The modulus of the difference 
is thus 

IIF21- IFxll = (Fg -t-f z) 1/2 

[ x F~+f2 [ cos ({u-{0)- cos ({U-0)] 

Fgf2 [ 
- 2(F~+fz) z [ cos z ({U-{O)- cos2(~-O)]+  . . . .  

(27) 

The second term is never more than a fraction of the 
first, so that the sign of the quantity within the modulus 
signs is the same as the sign of the first term, giving 

( I I F 4  - IF l l  I )  = ( (F~2F°f+f2)l/2 / (I sin ({U-½{O-½0)[) 

/ FiZ z \ 
x (1 sin (½0-½{O)[) - \ 2 ( F ~ ) 3 / 2 / 2  

x ( sin (2{U-{O-0)) ( sin ( 0 - { O ) ) + . . .  (28) 

The average value of Fof/(F~+fzy 2 could be calcu- 
lated, if necessary, from the distribution function of 
the structure factors for a non-centrosymmetric struc- 
ture (Wilson, 1949). However, except for structure 
factors of the order of f ,  the ratio has nearly enough 
the value f The mean value of the [sin xl terms is 
2/n each, and the mean value of IF[ is given by equa- 
tion (19), so that 

16f 
R - -  7~5/2 ,~1/2 "~- terms in f2/27, 

~ 16f/7~5/2 271/2 

~ 16~-5/2n-1/2. 

(29) 

(30) 

(31) 

Some justification for the neglect of reflexions with 
small F0 is contained in § 3(b) below. Centrosym- 

metric structures have a higher proportion of re- 
flexions with small F0, and it is found that even then 
the effect of neglecting them is small. 

3. Space group P1 
(a) Residual R 2 

For a centrosymmetric structure there must be two 
misplaced atoms,* related by the centre of symmetry, 
and all the structure factors will be real. The phase 
angle {U is thus either 0 or z~, but it is now convenient 
to forget about it and simply regard F0 as positive or 
negative. Then 

FI=Fo + 2fcos 0, ] 
F2=Fo +2fcos {O, 
I1 = F~ + 4fFo cos 0 + 4/2 COS 2 0 ,  

I2 = F~ + 4fFo cos {O + 4f z cos z {O, 

(32) 

I2-I1=8fFo sin ½(0+ {O) sin ½(0- {O) 
+ 4 f  2 sin (0+{O) sin (0-{O). (33) 

Squaring and averaging in the same way as before gives 

((I2-I,)Z)=64f2( X - 2 f z ) .  ½ . 3 + 0 +  16f 4 . ½.½ 
= 1 6 f 2  x - 2 8 / 4 .  ( 3 4 )  

Since the mean-square value of I for a centrosymmetric 
structure is 3 271-3 X4 (Wilson, 1951) the residual is 

16f 2 • - 2 8 f  4 16f 2 
~ - -  ( 3 5 )  

3 X z - 3  X4 327 ' 

4(4n-7)  
R z -  3n(n- 1) (36) 

~ 16/3n. (37) 

R 2 

or approximately 

(b) Residual R1 

Equation (33) can be written 

Ia-I~=8fsin ½(0+ {O) sin ½(0- {O) 
x[F0+2fcos  ½(0+{o)cos ½(0-{O)], (38) 

so that 

112-Ial=afl sin ½(0+{O)[ I sin ½(0-{O)[ IF0+kl (39) 

where 

k =2fcos {(0+ {o) cos ½(0- {o). (4o) 

The quantity within the final modulus signs in equation 
(39) is actually positive if 

F0> - k  (41) 
and negative if 

Fo< - k .  (42) 

* It is, of course, possible that a single atom might be mis- 
placed on the wrong centre of symmetry, but the possibility 
hardly deserves a detailed calculation. 
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Averaging over all possible values of  Fo thus gives 

( I F 0 + k l ) = -  f-~(Fo+ k)P(Fo)dFo 

+ ,J-~°°k(F° + k)P(Fo)dFo (43) 

where P(Fo)dFo is the probability distribution of F0. 
For a centrosymmetric structure this is (Wilson, 1949) 

P(Fo)dFo=(2rc X0)-l/2 exp ( -  F2o/2 Xo)dFo (44) 

where 
Z'o= X - 2f 2 . (45) 

The reduction of equation (43) follows slightly dif- 
ferent routes, depending on whether k is actually posi- 
tive or negative, but in either case it becomes 

(IFo+ k[)=(2re So) -x/z [2 loFo exp ( -  F2o/ 2 Xo) dFo 

+ 2 f~'(Ikl - Fo) exp ( -  F~6/2 Xo)dFo] (46) 

after a little rearrangement. The first integral is just 
the mean value of IFol, (2 -to~rOll z. In the second inte- 
gral Ikl is small compared with Z'~ ~2, so that the expo- 
nential may be expanded in a power series, giving 

[ ( [ F 0 + k l ) = ( 2  Xo/rc)I/z 1 + 2 X----o 

k 4 q 
+ . . .  (47) 

24 Xg ] " 

Equation (39) now has to be averaged over the angles 
0 and ~0. Inserting the average over F0 from equation 
(47) and writing k in full gives 

~'0/701/2 ( l  sin ½(0+~0)l I sin ½(0-- ~0)l (1Ia--Ill)=8f(2 

2f2 + X0 I cos2 ½(0+~0) sin ½(0+~01 [ cos z ½(0-q)) 

sin ½(0-~0)[ + . . .  ) (48) × 

] + . . .  (49) 
= ~5/2 L ~ ] " 

The residual is thus 

32 l/2f( 2J - 2fa)l/2 [ 1 + 2f2 
R1 • rcs/2 Z" [ 9( X - 2 F )  

or approximately 

321/2f 
R 1 -  7[5/2 ,~v'172 

321/2 

- - - + . . . ]  (50) 

(51) 

(52) 

It should be noted that if the effect of reflexions with 
Fo.,~f had been neglected, as was done in paragraph 
l(c), only the first term of the series (50) would have 
been obtained. The correction arising from taking into 
account these weak reflexions is ordinarily negligible, 
amounting to 1% for a structure with about twenty 
atoms. 

(e) Residual R 
As in paragraph l(c), for most reflexions [F o[ >>f, and 

IF1[ and I/=2[ can be expressed as a series by taking the 
square roots of equations (32) for/1 and/2. Expansion 
by the binomial theorem gives 

IF~l=lFol+2ffocos O/Ifol+O+... , (53) 

IFzl=lFol+2fFo cos ~o/IFol+0+ • • • , (54) 

the terms in f 2 cancelling. Then 

(llF2l-lFlll)=(2fl cos ~o- cos 0 1 + . . .  ) (55) 

=4f ( I  sin ½(0+~o)11 sin ½(0-~o)1 + . . .  ) 

_ 16f + . . .  (56) 
7~ 2 

The mean value of IF[ for a centrosymmetric structure 
is (2 X/rc) ~/2 (Wilson, 1949), so that 

R= 81/2f + . . .  (57) 
7[ 3/z X 

~' 8 ~/27~-3/2n -1/2 • (58 )  

4. Other space groups 

There is no difficulty in principle in carrying out similar 
calculations for space groups of higher symmetry, but 
the complexity increases with the multiplicity of the 
general position. The numerical values of the coef- 
ficients in R and R1 for the centrosymmetric space 
group PT are about twice as great as for the non- 
centrosymmetric P1, so that for other space groups 
one might hazard the guess that 

R ,~ R1 ~pf/X 1/2 , (59) 

where p is the multiplicity of the general position. For 
Rz the increase in going from P 1 to PT is a factor of 
8/3, so one might guess that 

R2,,,, 2½ pfz/X . (60) 

For the space group P2/m a preliminary calculation 
gives 

R2,.~32f2/3X, (61) 

whereas equation (60) would give the numerical coef- 
ficient 10. 

5. Experimental errors and some other 
practical considerations 

In the practical determination of a crystal structure 
the quantities corresponding to F1 and /1 will not be 
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calculated from the correct atomic positions, but will 
be obtained from the observed intensities, and will thus 
be subject to experimental error. The model of the 
crystal structure will be imperfect; the temperature 
factors may be anharmonic; the atomic scattering fac- 
tors may be aspherical or vary incorrectly with the 
length of the scattering vector; there may be vacant 
atomic positions. One can thus write for the three 
residuals 

Ri" = ((I2-/1 + 6) 2) (62) 
(12 ) ' 

Ri' = ( I /2 -  xl + al) (X) ' (63) 

R"= (IIF21- [Fll-t- el) (64) 
(IFI) ' 

where ~ and e are the corrections required to make 
the calculated values of /1  and IFll agree with those 
observed. Provided that there is no correlation between 
the corrections ~ and the sign of the differences Iz-11 
the mean value of ~(Iz-11) is zero, so that 

R" 2" = ((I2-I1) 2+ 2~(I2-I , )+62)  
( I  2 ) 

where 

=.Rz + R~, 

(65) 

(66) 

R ; -  (62) (67) 
(12 ) 

is the residual resulting from experimental errors and 
imperfections in the model. The values of R2 are thus 
simply additive - a result that could have been pre- 
dicted from the relation of R2 to the variance of the 
intensities. The combination is not so simple, however, 
for RI and R. These can be written 

R~' = ( IX+x l )  (68) 
and 

K'= (I Y+ yl) (69) 
where 

X =  ( 1 2 - / l ) / ( I ) ,  (70) 

x=6/( I )  , (71) 

Y= (IF21 - I & I ) / ( I F [ ) ,  (72) 

y=8/(lF[) , (73) 

and the averaging takes place over both X and x or 
both Y and y. Equations (68) and (69) are of the same 
form, and it suffices to discuss either one of them. 
Suppose that the fractional errors x have a probability 
distribution p(x)dx. Equation (68) becomes 

+ ( X + x ) p ( x ) d x  , (74) 

since IX+xl is equal to (X+x) when x is greater than 
- X and is equal to - (X+ x) otherwise. Equation (74) 
may be rearranged to give 

R' , '= (Xf~_ sgn (x)p(x)dx+ f~oo[x]p(x)dx 

- - ( X )  ( s g n ( x ) ) + ( I x [ ) + 2  X+x)p(x)dx), (76) 

where sgn (x) indicates the sign of x. If the distribution 
of either X or x is symmetrical about zero the first 
term vanishes. Both distributions would be expected 
to be nearly symmetrical, so that the first term can be 
neglected. The second term is just the function corre- 
sponding to RI for the errors, say R~. The third term 
cannot be evaluated unless the distributions of X and 
x are known or assumed. If the variance of x is large 
compared with the variance of X one can get an ap- 
proximation by replacing p(x) by p(O), which gives 
~ ~ ~ - ~ - . . ,  ...... . ....... -.- 

~ ,  . L - v - '  ~ - 7 . m - : ~ ' - , ~ -  T 

......... R~= R~ +~o(0) (X2) (77) 

=R~ +p(0) ((12-I~)Z)/(I) 2 (78) 

= R~ + kp(O)R2, (79) 
where 

k = (12) / ( i )2  (80) 

has approximately the value 2 for a non-centrosym- 
metric structure and approximately the value 3 for a 
centrosymmetric structure (Wilson, 1951). If the dis- 
tribution p(x) has a single maximum at x = 0 equations 
(77) and (79) set an upper limit for R~. Since equation 
(68) is symmetrical in X and x, equations (76), (77) 
and (79) can equally well be written as 

R~" = ( x )  ( sgn (X) )+  (IXl) 

+2 ( I °x (X+x)P(X)dX)  (81) 

= RI + t'(0) (x2) (82) 

= R l + ~ e ( 0 ) R i ,  (83) 

where P(X)dXis the probability distribution of X and 
R~ is defined by equation (67). Again, for P(X) having 
a single maximum at the origin, equations (82) and 
(83) actually set an upper limit for R~'. If the variance 
of X is less than the variance of x the limit set by equa- 
tions (82) and (83) may be lower than, and therefore 
preferable to, the upper limit set by equations (77) 
and (79). Lower limits for R~', under the same con- 
ditions, can be obtained by replacing p(0) by p(J?) 
and P(0) by P(:7), but the probability distributions may 
fall off too rapidly for these lower limits to be appre- 
ciably greater than R~ or RI. Exactly analogous equa- 
tions can be written for the residual R in terms of the 
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probability distributions q(y)dy and Q(Y)dY, giving 

R"= R'+q(O) ((IFzl-  IFll)Z) (84) 
(IFI 2) 

and 

R"= R + Q(0) @2) 
(IP12)" (85) 

It is perhaps worth noting that the argument be- 
tween equations (68) and (79) is mathematically just 
a more general version of that between equations (43) 
and (50), though the meanings attached to the symbols 
are different, and closely resembles that used in a dif- 
ferent residual calculation by Wilson (1950). Equation 
(50) may be obtained from equation (79) by substituting 
the appropriate distribution function from equation 
(44). Some insight may be gained into the nature of 
the approximation made in equation (77) and its equiv- 
alents by employing Gaussian approximations for 
p(x) and P(X). The sum of two variables with Gaus- 
sian distributions has a Gaussian distribution with 
variance equal to the sum of the variances of the vari- 
ables, and R1 for a Gaussian distribution is (2/re) 1/2 
times the square root of the variance, so that 

R~' = [R~ +(R  i )21'/2. (86) 

The first two terms of the binomial expansion of this 
in powers of the ratio R1/R~ or R~/R1 then lead to 
equation (77) or (82). 

It has been tacitly assumed that the components of 
the misplacement of the atom are not rationally related 
to the edges of the unit cell. Dr T. R. Lomer has pointed 
out to me that a rational misplacement of, say, half 
a cell edge is quite a probable error. The atom will 
then contribute correctly to reflexions with the corre- 
sponding index even, but with the wrong phase to 
reflexions with the index odd. This affects the numer- 
ical value of the coefficients of some of the residuals 
to some extent (for example, the mean value of[ sin xl 
becomes 1/2 instead of 2/z0, but the order of magnitude 
is not affected. 

As the calculations have turned out, the residuals 
resulting from a misplaced atom are large and unlikely 

to be overlooked. When the measurements of intensity 
have been made with good accuracy and an advanced 
refinement program is used there will be other and 
better pointers to a misplaced atom; its temperature 
factors may be expected to be anomalously large; if 
occupancy weights are refined that for the misplaced 
atom will continuously decrease; an electron-density 
map will probably show two partial atoms, one in the 
right place and one in the wrong place; a difference 
Fourier will have large anomalies. Nevertheless, it 
seems worthwhile to have the calculations on record, 
if only to avoid their being unnecessarily repeated. In 
so far as they have any direct use it will be in the study 
of substances whose nature precludes the attainment 
of great accuracy in intensity measurement. 

It has been assumed in the calculations that the mis- 
placement of one atom does not affect the coordinates 
of those correctly placed. The question thus arises 
whether, by small adjustments of the parameters of 
the correctly placed atoms, it is possible to refine the 
residual to values appreciably lower than those calcu- 
lated. A full discussion of this problem would be dif- 
ficult, but a preliminary consideration of the mini- 
mization of R2 suggests that there would be no system- 
atic changes in the coordinates of the correctly placed 
atoms. The shifts would be proportional to the mean 
over all reflexions of Fo(r)Fo/c)x), where x is the param- 
eter in question. For the positional parameters the 
expected value of this average is zero, but in any par- 
ticular case it may have some finite value, which may 
be appreciable if the number of reflexions averaged is 
small. Misplacement of one atom, therefore, will in- 
crease the variance of the coordinates of the remaining 
atoms. 

As originally submitted, this paper consisted essen- 
tially of §§ 2 to 4. The author is indebted to the 
referees for suggestions which have led to the expansion 
of § 1 and the addition of § 5. 
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